Abstract
ObjectiveAfter blunt thoracic trauma (TxT) and hemorrhagic shock with resuscitation (H/R) intense local inflammatory response and cell loss frequently impair the pulmonary function. Ethyl pyruvate (EP) has been reported to improve the pathophysiologic derangements in models of acute inflammation. Here, we studied the effects of EP on inflammation and lung damage after TxT+H/R. MethodsTwenty four female Lewis rats (180–240g) were randomly divided into 3 groups: two groups underwent TxT followed by hemorrhagic shock (35±3mmHg) for 60min and resuscitation with either Ringers-Lactat (RL) alone or RL supplemented with EP (EP, 50mg/kg). Sham operated animals underwent surgical procedures. Two hours later bronchoalveolar lavage fluid (BAL), lung tissue and blood were collected for analyses. ResultsEP significantly improved pO2 levels compared to RL after TxT+H/R. TxT+H/R induced elevated levels of lactate dehydrogenase, total protein concentration in BAL and lung damage as evidenced by lung histology; these effects were significantly reduced by EP. Local inflammatory markers, lung TNF-alpha protein levels and infiltration with polymorphonuclear leukocytes (PMNL) significantly decreased in EP vs. RL group after TxT+H/R. Indicators of apoptosis as reduced BCL-2 and increased FAS gene expression after TxT+H/R were significantly increased or decreased, respectively, by EP after TxT+H/R. EP reduced TxT+H/R-induced p65 phosphorylation, which was concomitant with reduced HMGB1 levels in lung sections. ConclusionsTaken together, TxT+H/R induced strong inflammatory response and apoptotic changes as well as lung injury which were markedly diminished by EP. Our results suggest that this might be mediated via NF-κB and/or HMGB1 dependent mechanism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.