Abstract

Classical experimental models of hemorrhage are characterized by the use of anesthetics that may interfere with the typical immune responses and pathology of hemorrhage/resuscitation. Thus, therapeutic strategies successful in anesthetized animals might not be beneficial in clinical trials. In this study, we analyzed whether ethyl pyruvate could provide therapeutic benefits during resuscitation in awake (unanesthetized) hemorrhage. Our results indicate that hemorrhage in unanesthetized animals required approximately 25% higher blood withdrawal than anesthetized animals to achieve the same targeted mean arterial blood pressure. Resuscitation with Hextend reestablished circulatory volume and improved survival during resuscitation of awake rodents. Yet, over 75% of the animals resuscitated with Hextend died within the first hours after hemorrhage. Resuscitation with Hextend containing 50 mM ethyl pyruvate protected over 87% of the animals. This survival benefit did not correlate with significant changes in the metabolic markers but with an anti-inflammatory potential during resuscitation. Unlike classical hemorrhage in anesthetized animals, ethyl pyruvate reestablished mean arterial blood pressure significantly earlier than Hextend in unanesthetized rodents. Unanesthetized animals showed twofold higher serum tumor necrosis factor (TNF)-alpha than anesthetized animals subjected to the same blood pressure. This process was not due to the response of a single organ, but affected all the analyzed organs including the lung, heart, spleen, and liver. Although resuscitation with Hextend failed to attenuate systemic TNF-alpha levels, it inhibited TNF-alpha levels in the lung, heart, and liver but not in the spleen. Unlike Hextend, resuscitation with ethyl pyruvate prevented high serum TNF-alpha levels and blunted TNF-alpha responses in all the organs including the spleen. These studies indicate that the inflammatory responses in anesthetized animals differ from that in unanesthetized animals and that awake hemorrhage can provide advantages in the study of anti-inflammatory strategies during resuscitation. Ethyl pyruvate may attenuate systemic inflammatory responses during resuscitation and improve survival in experimental models of awake hemorrhage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.