Abstract
This work attempts to resolve one of the key issues related to the design and development of sustained-release spherule of aspirin for oral formulations, tailored to treat COVID-19. For that, in the Design of Experiments (DOE) an arbitrary interface, “coating efficiency” (CE) is introduced and scaled the cumulative percentage coating (CPC) to get predictable control over drug release (DR). Subsequently, the granules containing ASP are converted to spherules and then to Ethyl cellulose (EC) Coated spherules (CS) by a novel bed coating during the rolling (BCDR) process. Among spherules, one with 0.35 mm than 0.71 mm shows required properties. The CS has a low 1200 angle by Optical Microscopy (OM), smooth surface without cracks by scanning electron microscopy (SEM), and better flow properties (Angle of repose 29.69 ± 0.780, Carr's index 6.73 ± 2.24%, Hausner's Ratio 1.07 ± 0.03) than granules and spherules. Once certain structure-dependent control over release is attained (EC coated spherules shows 10% reduction in burst release (BR) than uncoated spherules showing a release of 80–91%) the predictability is achieved and Design of space (DOS) by DOE (CE-70.14%and CPC-200% and DR-61.54%) is established. The results of DOE to experimentally validated results were within 20% deviation. The aspirin is changing its crystal structure by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) from Form-I to Form-II showing polymorphism inside the drug reservoir with respect to the process. This CE and CPC approach in DOE can be used for delivery system design of other labile drugs similar to aspirin in emergency situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.