Abstract

Ethyl caffeate (EC) is a natural phenolic compound that is present in several medicinal plants used to treat inflammatory disorders. However, its anti-inflammatory mechanisms are not fully understood. Here, we report that EC inhibits aryl hydrocarbon receptor (AhR) signaling and that this is associated with its anti-allergic activity. EC inhibited AhR activation, induced by the AhR ligands FICZ and DHNA in AhR signaling-reporter cells and mouse bone marrow-derived mast cells (BMMCs), as assessed by AhR target gene expressions such as CYP1A1. EC also inhibited the FICZ-induced downregulation of AhR expression and DHNA-induced IL-6 production in BMMCs. Furthermore, the pretreatment of mice with orally administered EC inhibited DHNA-induced CYP1A1 expression in the intestine. Notably, both EC and CH-223191, a well-established AhR antagonist, inhibited IgE-mediated degranulation in BMMCs grown in a cell culture medium containing significant amounts of AhR ligands. Furthermore, oral administration of EC or CH-223191 to mice inhibited the PCA reaction associated with the suppression of constitutive CYP1A1 expression within the skin. Collectively, EC inhibited AhR signaling and AhR-mediated potentiation of mast cell activation due to the intrinsic AhR activity in both the culture medium and normal mouse skin. Given the AhR control of inflammation, these findings suggest a novel mechanism for the anti-inflammatory activity of EC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.