Abstract

The pathogenesis of Alzheimer's disease (AD), a multifactorial progressive neurodegenerative disease associated with aging, is unclear. Ethyl caffeate is a plant polyphenol that has been reported to have neuroprotective effects, but the mechanisms by which it acts are unclear. In this study, for the first time, we investigated the molecular mechanism of its anti-AD properties using the Caernorhabditis elegans model. The results of our experiments showed that ethyl caffeate delayed the paralysis symptoms of CL4176 to a different extent and reduced the exogenous 5-hydroxytryptophan-induced paralysis phenotype. Further studies revealed that ethyl caffeate lowered Aβ plaques and depressed the expression of Aβ monomers and oligomers, but did not influence the mRNA levels of Aβ. Moreover, it was able to bring paraquat-induced ROS levels down to near-standard conditions. Real-time quantitative PCR experiment showed a significant upregulation of the transcript abundance of daf-16, skn-1 and hsf-1, key factors associated with the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway (IIS), and their downstream genes sod-3, gst-4 and hsp-16.2. It was further shown that ethyl caffeate activated the translocation of DAF-16 and SKN-1 from the cytoplasm to the nucleus and enhanced the expression of sod-3::GFP, gst-4::GFP and hsp-16.2::GFP in transgenic nematodes. This meant that the protection against Aβ toxicity by ethyl caffeate may be partly through the IIS signaling pathway. In addition, ethyl caffeate suppressed the aggregation of polyglutamine proteins in AM141, which indicated a potential protective effect against neurodegenerative diseases based on abnormal folding and aggregation of amyloid proteins. Taken together, ethyl caffeate is expected to develop as a potential drug for the management of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call