Abstract

BackgroundTraditionally, seeds of Herpetospermum pedunculosum were used to treat liver disease or cholepathy. Up to date, their protecting effect against cholestasis was remain unclarified. PurposeTo investigate the efficacy, possible mechanisms, and active constituents of the ethyl acetate extract from the seeds of Herpetospermum pedunculosum (HPEAE), studies were carried out using cholestasis rat model induced by α-naphthylisothiocyanate (ANIT). MethodsMale rats were intragastrically treated with HPEAE (100, 200 or 400 mg/kg) once a day for 7 days and were modeled with ANIT (60 mg/kg). The levels of serum indicators, bile flow, and histopathology were evaluated. Indices of oxidative stress and inflammatory mediators were detected using the enzyme-linked immunosorbent assay. Western blotting method was employed for analyzing the protein levels in the signal pathways of farnesoid X receptor (FXR), kelch ech associating protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) and nuclear factor κB (NF-κB). The chemical compositions of HPEAE was analyzed by HPLC, and partially chemical components of HPEAE were identified by comparisons of their retention times with the standards. The FXR agonistic activity of the identified compounds was evaluated in l-02 cells induced by guggulsterone using a high-content screening system. ResultsThe cholestasis caused by ANIT can be significantly ameliorated by restoring the liver function indexes of alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-glutamyltransferase, total bilirubin, direct bilirubin and total bile acid, which are dose-dependent, as well as pathological liver injury and bile flow. Mechanical studies suggested that HPEAE can activate the expression of FXR and then up regulate its downstream proteins (multidrug resistance-associated protein 2, bile salt export pump and Na+/taurocholate cotransporting polypeptide). Moreover, the levels of the active oxygen index glutathione, superoxide dismutase, glutathione peroxidase, catalase and malondialdehyde were markedly restored by treatment with HPEAE. Western blotting further confirmed that HPEAE up regulated the expression of quinone oxidoreductase 1, heme oxygenase 1 and Keap1, lowered the expression of Nrf2 and reduced oxidative stress. HPEAE also up regulated P-glycoprotein 65, phosphorylated P-glycoprotein 65 and inhibitor of NF-κB kinase α expression, down regulated inhibitor of NF-κB (IκB), restored inflammatory mediator tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6 and IL-10, and reduced inflammatory response. Fifteen compounds were identified (12 lignans and 3 coumarins). Among them, five lignans exhibited the significant FXR agonistic activity in vitro. ConclusionHPEAE may alleviate the cholestasis and liver injury caused by ANIT in rats by activating FXR, as well as suppressing the Keap1/Nrf2 and NF-κB signaling pathways and lignans may be its main active components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call