Abstract

In this study we reexamined the basis for the profound inhibitory effects of low concentrations of diethyl pyrocarbonate (DEP) on tubulin's ability to assemble into microtubules [cf. Lee, Y. C., Houston, L. I., & Himes, R. H. (1976) Biochem. Biophys. Res. Commun. 70, 50-56]. Assembly inhibition at low DEP concentrations can be resolved into two components: a component reversible with hydroxylamine (attributed to monoethoxyformylation of histidyl residues) that contributes approximately 40% of the inhibition and a hydroxylamine-resistant component (attributed to ethoxyformylation of non-histidyl residues) that contributes approximately 60% of the inhibition. Comparisons between the extent of assembly inhibition associated with each component and the degree of residue modification argue for the involvement of a small number of highly reactive residues in the inhibition process. To identify these residues, tubulin was reacted with limiting concentrations of [3H]DEP and subjected to tryptic digestion and HPLC analysis. Only one moderately reactive histidyl residue was detected. This residue (approximately 2-3-fold more reactive than the bulk histidyl residues) eluted in an apparently large, hydrophobic fragment. We failed to detect any non-histidyl residues that were exceptionally reactive to [3H]DEP. However, we did observe that the N-terminal methionyl residues in native protein were ethoxyformylated at rates comparable to that of the bulk histidyl residues. In denatured protein these methionyl residues were ethoxyformylated to a much larger extent (approximately 3-4-fold) than the bulk histidyl residues. We suggest that the N-terminal methionyl residues in tubulin are partly buried or are in a salt-bridge interaction in native protein and that ethoxyformylation of these residues disrupts tubulin structure and interferes with microtubule assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call