Abstract

High-throughput analysis of behaviour is a pivotal instrument in modern neuroscience, allowing researchers to combine modern genetics breakthrough to unbiased, objective, reproducible experimental approaches. To this extent, we recently created an open-source hardware platform (ethoscope; Geissmann Q, Garcia Rodriguez L, Beckwith EJ et al. Rethomics: an R framework to analyse high-throughput behavioural data. PLoS One 2019;14:e0209331) that allows for inexpensive, accessible, high-throughput analysis of behaviour in Drosophila or other animal models. Here we equip ethoscopes with a Python framework for data analysis, ethoscopy, designed to be a user-friendly yet powerful platform, meeting the requirements of researchers with limited coding expertise as well as experienced data scientists. Ethoscopy is best consumed in a prebaked Jupyter-based docker container, ethoscope-lab, to improve accessibility and to encourage the use of notebooks as a natural platform to share post-publication data analysis. Ethoscopy is a Python package available on GitHub and PyPi. Ethoscope-lab is a docker container available on DockerHub. A landing page aggregating all the code and documentation is available at https://lab.gilest.ro/ethoscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.