Abstract

Bar racks at water intakes of hydropower plants serve mainly to protect the turbines from floating debris. Additionally, they can be utilized to protect downstream migrating fish in order to prevent a potentially harmful turbine passage. The Bar Rack FishProtector consists of a common bar rack equipped with electrodes mounted on the upstream side of the bars. The application of a low voltage current at the electrodes creates an electric field in the water which is actively avoided by fish. Thus, a hybrid barrier consisting of a mechanical barrier and a behavioral barrier is formed. An unscaled model of a Bar Rack FishProtector (bar spacing sb = 50 mm, bar thickness tb = 20 mm) was used in field experiments to investigate the retention rate in an experimental setup with only one possible migration route (downstream, rack passage) and an average flow velocity of 0.43 m/s. Ethohydraulic experiments were performed with three indicator species barbel (Barbus barbus), bream (Abramis brama) and roach (Rutilus rutilus) and additionally perch (Perca fluviatilis) in selected trials. The twelve trials included four reference trials without electric field present (Nday = 2, Nnight = 2) and eight trials with electric field (Nday = 6, Nnight = 2). The results show that the experimental retention rate could be increased significantly by the application of an electrical field during the night and during the day with an even more pronounced effect during the night. The differences between the functionality of the system during the day and at night as well as other influencing parameters are discussed. No significant influence of the applied voltage on the electrodes or significant influence of fish size could be identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call