Abstract
Increasing evidence supports the role of early-life gut microbiota in developing atopic diseases, but ecological changes to gut microbiota during infancy in relation to food sensitization remain unclear. We aimed to characterize and associate these changes with the development of food sensitization in children. In this observational study, using 16S rRNA amplicon sequencing, we characterized the composition of 2844 fecal microbiota in 1422 Canadian full-term infants. Atopic sensitization outcomes were measured by skin prick tests at age 1 year and 3 years. The association between gut microbiota trajectories, based on longitudinal shifts in community clusters, and atopic sensitization outcomes at age 1 and 3 years were determined. Ethnicity and early-life exposures influencing microbiota trajectories were initially examined, and post-hoc analyses were conducted. Four identified developmental trajectories of gut microbiota were shaped by birth mode and varied by ethnicity. The trajectory with persistently low Bacteroides abundance and high Enterobacteriaceae/Bacteroidaceae ratio throughout infancy increased the risk of sensitization to food allergens, particularly to peanuts at age 3 years by 3-fold (adjusted odds ratio [OR] 2.82, 95% confidence interval [CI] 1.13-7.01). A much higher likelihood for peanut sensitization was found if infants with this trajectory were born to Asian mothers (adjusted OR 7.87, 95% CI 2.75-22.55). It was characterized by a deficiency in sphingolipid metabolism and persistent Clostridioides difficile colonization. Importantly, this trajectory of depleted Bacteroides abundance mediated the association between Asian ethnicity and food sensitization. This study documented an association between persistently low gut Bacteroides abundance throughout infancy and sensitization to peanuts in childhood. It is the first to show a mediation role for infant gut microbiota in ethnicity-associated development of food sensitization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.