Abstract

Changes of enzymes involved in the hepatic metabolism of long-chain fatty acids (palmitoyl-CoA synthetase (EC 6.2.1.3), carnitine palmitoyltransferase (EC 6.2.1.3), glycerophosphate acyltransferase (EC 2.3.1.15)) in the liver of male rats were examined after ethionine exposure. Ethionine administration resulted in a dose-and time-dependent enhancement of the palmitoyl-CoA synthetase activity both in the mitochondrial, peroxisomal and microsomal fractions. The total carnitine palmitoyltransferase activity in the mitochondrial fraction was enhanced. Ethionine administration was also associated with dose- and time-dependent changes of the microsomal glycerophosphate acyltransferase activity, whereas the mitochondrial enzyme activity was marginally affected. The hepatic triacylglycerol content of the enthionine-treated animals was increased. Hepatic lipids were accumulated in large droplets. Serum triacylglycerol and cholesterol were decreased. In particular, the serum HDL-cholesterol level was lowered. The concentration of ATP in the liver decreased. Accumulation of the metabolic product S-adenosylethionine (AdoEth) was observed for the first 2 days of exposure followed by a fall in S-adenosylmethionine (Ado-Met) during the next 10 days. Linear regression analysis of ATP content versus AdoEth and AdoMet showed highly significant correlations. A significant correlation between the hepatic triacyglycerol and AdoEth content was also observed upon ethionine treatment. The data show that ethionine perturbs the hepatic lipid metabolism. Enhanced esterification of long-chain fatty acids, but not a simple reduction of their oxidation, might contribute to enthionine-induced fatty liver in addition to a block in secretion of lipoproteins and decreased protein synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call