Abstract

Assisted reproductive technology (ART) has experienced dramatic progress over the last 30 years, and gamete donation is routine in fertility clinics. Major advances in genetic diagnostics are part of this development due to the ability to analyze multiple genes or whole genomes fast and to an affordable prize. This requires knowledge and capability to evaluate genetic variants correctly in a clinical setting. Here we report a Menkes disease case, born after ART, where genetic screening and variant scoring failed to identify an egg donor as carrier of this fatal X-linked disorder. The gene variant is a deletion of a single base pair leading to a frameshift and premature termination of the protein, predicted to result in no or severely diminished function. The variant would be classified as likely pathogenic (class 4) and should be readily detectable by molecular genetic screening techniques. We wish to highlight this case to prevent future similar cases. IVI Igenomix has developed and embarked on an ambitious screening program to detect and prevent a large number of inherited severe childhood disorders in ART pregnancies. The company has recently achieved ISO 15189 certification with competence to evaluate and deliver timely, accurate, and reliable results. Failure to identify a pathogenic variant in the ATP7A gene leading to birth of two boys with Menkes disease invokes the required procedures to screen and detect disease-causing gene variants. This calls for ethical and legal considerations in ART diagnostics to prevent fatal errors like the present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call