Abstract

Brain-computer interfaces (BCIs), or brain-machine interfaces (BMIs) involve real-time direct connections between the brain and a computer (Kubler, 2009; Wolpaw and Wolpaw, 2011). Bidirectional feedback between the user and the system produces physical changes that can restore some degree of motor or communicative control for individuals with lost limbs, extensive paralysis or who are significantly neurologically compromised (Hochberg et al., 2006, 2012). In these respects, a BCI can enable an individual with severe brain or bodily injury to regain some degree of agency. By providing the subject with the relevant type of feedback, the device may enable her to translate an intention into an action despite the inability to perform voluntary bodily movements. There are two types of feedback with a BCI. The first concerns feedback about the outcome of a self-initiated, BCI-mediated action, such as moving a computer cursor or robotic arm. It provides only indirect feedback about brain activity. The second type concerns direct feedback about the level of brain activity itself. The first is more pertinent to the potential to restore some behavior control in the sense that one can perceive the success or failure of their mental act. Although it is still at an early stage of development, an EEG- or fMRI-based BCI might also enable minimally conscious individuals or those with complete locked-in syndrome to communicate wishes about medical treatment when they are unable to do this verbally or gesturally (Sellers, 2013). These applications of interface technology raise a number of ethical issues (McCullagh et al., 2014), three of which I will discuss in this article. First, in some cases patients' and caregivers' expectations about recovering motor function with a BCI might not be reasonable given the cognitive challenges in operating the system. This might result in psychological harm when the subject's desires and intentions to produce actions fail to be realized. Second, the different types of electrodes used to detect and respond to motor cortical neural signals involve different levels of invasiveness and different benefit-risk ratios that have to be weighed with a view to the probable success or failure of the technique. Third, the use of a BCI for communication in neurologically compromised patients prompts the question of whether their responses would be evidence of the capacity to make informed decisions about their care.

Highlights

  • Brain-computer interfaces (BCIs), or brain-machine interfaces (BMIs) involve real-time direct connections between the brain and a computer (Kubler, 2009; Wolpaw and Wolpaw, 2011)

  • Conscious perception and expression of intentions in locked-in patients is different from that of minimally conscious patients, and this may better facilitate communication through a BCI. One challenge for this intervention would be that BCIs typically utilize visual feedback, and minimally conscious and completely locked-in subjects have limited or no capacity to receive feedback from and respond to a visual stimulus in learning how to operate the system

  • Tactile or auditory feedback could be used to enable communication (Kubler, 2009; Hochberg and Cudkowicz, 2014). Even if this modality could overcome the limitations associated with a lack of visual feedback, questions would remain about the meaning of “communicate.” it is not clear whether the responses of linguistically impaired minimally conscious or even fully conscious locked-in patients would be evidence of the cognitive and emotional capacity to give informed consent to continue or discontinue artificial hydration and nutrition (Brady Wagner, 2003; Jox, 2013)

Read more

Summary

Introduction

Brain-computer interfaces (BCIs), or brain-machine interfaces (BMIs) involve real-time direct connections between the brain and a computer (Kubler, 2009; Wolpaw and Wolpaw, 2011). To minimize the probability of harm, investigators and practitioners must educate users on the potential positive effects and limits of BCIs. They should adopt strict selection criteria and include only those with largely preserved cognitive functions who could give informed consent and would more likely be trained to successfully operate it.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call