Abstract

Since the dawn of additive manufacturing technologies in the 1980s and 90s, now commonly named 3D printing, the possibility of processing raw materials into freeform designed objects with unprecedented shape complexity opened new avenues for the development of medical devices. Indeed, the geometries of nature and the human body are extremely multifaceted, with even fractal- like or multiscale levels of detail, counting with functional gradients of properties, including topology and topography optimizations, to cite some interesting features. In consequence, classical subtracting manufacturing technologies, shape forming tools, and mass production chains are suboptimal for personalizing medical devices and adequately emulating life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.