Abstract

BackgroundGenomic profiling of malignant tumours has assisted clinicians in providing targeted therapies for many serious cancer-related illnesses. Although the characterisation of somatic mutations is the primary aim of tumour profiling for treatment, germline mutations may also be detected given the heterogenous origin of mutations observed in tumours. Guidance documents address the return of germline findings that have health implications for patients and their genetic relations. However, the implications of discovering a potential but unconfirmed germline finding from tumour profiling are yet to be fully explored. Moreover, as tumour profiling is increasingly applied in oncology, robust ethical frameworks are required to encourage large-scale data sharing and data aggregation linking molecular data to clinical outcomes, to further understand the role of genetics in oncogenesis and to develop improved cancer therapies.ResultsThis paper reports on the results of empirical research that is broadly aimed at developing an ethical framework for obtaining informed consent to return results from tumour profiling tests and to share the biomolecular data sourced from tumour tissues of cancer patients. Specifically, qualitative data were gathered from 36 semi-structured interviews with cancer patients and oncology clinicians at a cancer treatment centre in Singapore. The interview data indicated that patients had a limited comprehension of cancer genetics and implications of tumour testing. Furthermore, oncology clinicians stated that they lacked the time to provide in depth explanations of the tumour profile tests. However, it was accepted from both patients and oncologist that the return potential germline variants and the sharing of de-identified tumour profiling data nationally and internationally should be discussed and provided as an option during the consent process.ConclusionsFindings provide support for the return of tumour profiling results provided that they are accompanied with an adequate explanation from qualified personnel. They also support the use of broad consent regiments within an ethical framework that promotes trust and benefit sharing with stakeholders and provides accountability and transparency in the storage and sharing of biomolecular data for research.

Highlights

  • Genomic profiling of malignant tumours has assisted clinicians in providing targeted therapies for many serious cancer-related illnesses

  • The study was designed with the aims of exploring and describing the attitudes, understandings and preferences that clinicians and cancer patients have towards participation in tumour profiling research, storage and sharing of tumour genetic data, and the return of tumour profiling results

  • Three major themes emerged: limited comprehension of cancer genetics and the consent process indicating that decision support is required; the consent preferences regarding the return of test results and usage of tumour profiling data for research; and the issues of trust and accountability in relation to research involvement

Read more

Summary

Introduction

Genomic profiling of malignant tumours has assisted clinicians in providing targeted therapies for many serious cancer-related illnesses. Generation sequencing (NGS) platforms are integral to translational cancer research in identifying and validating promising new biomarkers for the development of cancer treatment Worldwide collaborative efforts, such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), have catalogued the genomic landscapes of thousands of tumours. In such settings, germline DNA has been routinely collected for comparative analysis with tumour DNA from the same patient to distinguish unambiguously true somatic mutations from rare germline polymorphisms. Clinical practice is currently shifting towards a preference of routinely sequencing a patient’s tumour tissue alone, to characterise its molecular profile: reasons for this preference include cost reduction and simplifying the logistics of sample collection [2, 3]. Sequencing a patient’s tumour tissue alone, in the absence of a matched germline sample, challenges accurate delineation of somatic versus germline mutations due to the heterogeneous nature of mutations observed in tumours

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call