Abstract
AbstractThe compatibility of lithium metal with organic solvents is the most crucial for lithium metal batteries (LMBs). Even though ether solvents show excellent compatibility toward lithium metal, the reactivity of the ether solvents at elevated temperatures and high voltages hinders their utilization in lithium metal battery systems. In this study, a high‐temperature ether electrolyte is designed comprising lithium oxalyldifluoroborate (LiODFB), diethylene glycol dibutyl ether (DGDE), 3‐methoxypropionitrile (MPN), and fluorinated ethylene carbonate (FEC), which is abbreviated as MDF electrolyte. The presence of MPN in the electrolyte changes the solvation structure, thereby facilitating increased redox reactions of ODFB− and synergizing with FEC to build a robust solid electrolyte interface (SEI), effectively inhibiting lithium dendrites growth and solvent decomposition. Consequently, the MDF electrolyte exhibits not only long cyclic stability and high coulombic efficiency in Li||Cu and Li||Li cells but also excellent cyclic characteristics in both Li||LiFePO4 (LFP) and Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) cells. Remarkably, these cells demonstrate stable operation even when exposed to higher temperatures of up to 80 °C, while the Li||NCM811 cell maintains consistent cyclic stability at an elevated voltage level of 4.5 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.