Abstract

AbstractAlthough ether‐based electrolytes have been extensively applied in anode evaluation of batteries, anodic instability arising from solvent oxidability is always a tremendous obstacle to matching with high‐voltage cathodes. Herein, by rational design for solvation configuration, the fully coordinated ether‐based electrolyte with strong resistance against oxidation is reported, which remains anodically stable with high‐voltage Na3V2(PO4)2O2F (NVPF) cathode under 4.5 V (versus Na+/Na) protected by an effective interphase. The assembled graphite//NVPF full cells display superior rate performance and unprecedented cycling stability. Beyond that, the constructed full cells coupling the high‐voltage NVPF cathode with hard carbon anode exhibit outstanding electrochemical performances in terms of high average output voltage up to 3.72 V, long‐term cycle life (such as 95 % capacity retention after 700 cycles) and high energy density (247 Wh kg−1). In short, the optimized ether‐based electrolyte enriches systematic options, the ability to maintain oxidative stability and compatibility with various anodes, exhibiting attractive prospects for application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.