Abstract

Engineering Pt-free catalysts for hydrogen evolution reaction (HER) with high activity and stability is of great significance in electrochemical hydrogen production. Herein, in situ chemical H intercalation into ultrafine Pd to activate this otherwise HER-inferior material to form the ultrafine IrPdH hydride as an efficient and stable HER electrocatalyst is proposed. The formation of PdIrH depends on a new hydrogenation strategy via using ethanol as the hydrogen resource. It is demonstrated that H atoms in IrPdH originate from the OH and CH2  of ethanol, which fills the gap of ethanol as the hydrogen source for the preparation of Pd hydride. Thanks to the incorporation of H/Ir atoms and ultrafine structure, the IrPdH exhibits superior HER activity and stability in the whole pH range. The IrPdH delivers very low overpotentials of 14, 25 and 60mV at a current density of 10mA cm-2 respectively in 0.5m H2 SO4 , 1m KOH, and 1m PBS electrolytes, which are much better than those of commercial Pt/C and most reported noble metal electrocatalysts. Theoretical calculations confirm that interstitial hydrogen availably refines the electronic density of Pd and Ir sites, which optimizes the adsorption of *H and leads to the significant enhancement of HER performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call