Abstract

The Trichoderma genus comprises several species of fungi whose diversity of secondary metabolites represents a source of potential molecules with medical application. Because of increased pathogen resistance and demand for lower production costs, the search for new pharmacologically active molecules effective against pathogens has become more intense. This is particularly evident in the case of American cutaneous leishmaniasis due to the high toxicity of current treatments, parenteral administration, and increasing rate of refractory cases. We have previously shown that a fungus from genus Trichoderma can be used for treating cerebral malaria in mouse models and inhibit biofilm formation. Here, we evaluated the effect of the ethanolic extract of Trichoderma asperelloides (Ext-Ta) and its fractions on promastigotes and amastigotes of Leishmania amazonensis, a major causative agent of cutaneous leishmaniasis in the New World. Ext-Ta displayed leishmanicidal action on L. amazonensis parasites, and its pharmacological activity was associated with the low-molecular-weight fraction (LMWF) of Ext-Ta. Ultrastructural analysis demonstrated morphological alterations in the mitochondria and the flagellar pocket of promastigotes, with increased lipid body and acidocalcisome formation, microtubule disorganization of the cytoplasm, and intense vacuolization of the cytoplasm when amastigotes were present. We suggest the antiparasitic activity of Trichoderma fungi as a promising tool for developing chemotherapeutic leishmanicidal agents.

Highlights

  • Fungi of the genus Trichoderma are endophytes, well-known as pathogens for other fungi (Atanasova et al, 2013)

  • We have shown the effects of the treatment with the ethanolic extract of Trichoderma asperelloides on Leishmania amazonensis parasites, which makes this fungus an innovative alternative to the development of new leishmanicidal drugs

  • We have previously shown that an in vivo treatment of cerebral malaria with the ethanolic extract of Trichoderma stromaticum has promising effects, including reduction of parasitemia and inflammation, increased survival, and prevention of neurological signs of cerebral malaria in C57BL/6 mice (Cariaco et al, 2018)

Read more

Summary

Introduction

Fungi of the genus Trichoderma are endophytes, well-known as pathogens for other fungi (Atanasova et al, 2013). Because of their high reproductive rate, their ability to secrete antibiotics and biomass-degrading enzymes as well as to colonize crop species, they play an important role in agriculture and biotechnology (Schuster and Schmoll, 2010). Iwatsuki et al (2010) reported that trichosporin B-VIIa and trichosporin B-VIIb peptaibiotics, produced by Trichoderma polysporum, exerted antitrypanosomal activity against Trypanosoma brucei, suggesting that this compound interacts in the protozoan membrane. There are no reports of the activity of Trichoderma metabolites against other neglected diseases such as leishmaniasis, which comprises a serious public health problem

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call