Abstract

BackgroundOur previous genome-wide gene expression analysis revealed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors 4 (DR4) and 5 (DR5) are markedly upregulated by the ethanolic extract of D. sohia seeds (EEDS) in A549 TRAIL-refractory cancer cells. In the present study, we investigated whether the EEDS-mediated upregulation of TRAIL death receptors was associated with increased TRAIL-mediated toxicity in A549 cells in vitro.MethodsCell proliferation and viability were determined by an automatic cell counter. Gene silencing was performed by introducing small interfering RNA into cells. Expression changes of cellular proteins were determined by western blot analysis. Apoptotic cell death was monitored by western blot analysis. Analysis of variance followed by the post-hoc Dunnett’s test was used to compare the data.ResultsEEDS treatment increased both mRNA and protein levels of DR4 and DR5 in the TRAIL refractory A549 cells. Co-treatment of A549 cells with sub-lethal dose of EEDS and recombinant TRAIL increased the apoptotic cell death. Upregulation of DR5 by EEDS was mediated by an endoplasmic reticulum stress-induced transcription factor, CCAAT/enhancer-binding protein homologous protein (CHOP), and knockdown of CHOP expression inhibited EEDS-induced DR5 upregulation and abolished the EEDS-associated increase in TRAIL toxicity in A549 cells.ConclusionsEEDS can sensitize A549 cells to TRAIL cytotoxicity by upregulation of TRAIL death receptors. Our findings suggested that EEDS is a good initial herbal source for the development of an anticancer supplement for anticancer therapeutics associated with TRAIL.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-016-1094-0) contains supplementary material, which is available to authorized users.

Highlights

  • Our previous genome-wide gene expression analysis revealed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors 4 (DR4) and 5 (DR5) are markedly upregulated by the ethanolic extract of D. sohia seeds (EEDS) in A549 TRAIL-refractory cancer cells

  • From our previous gene expression profiling of TRAIL-refractory A549 human lung cancer cells, we found that DR4 and death receptor 5 (DR5) expression was enhanced by treatment with the ethanolic extract of Descurainia sophia seeds (EEDS) [24]

  • The cells were exposed to increasing concentrations of recombinant TRAIL (0-100 ng/mL) for 48 h, and cell viability was determined based on membrane integrity as previously described

Read more

Summary

Introduction

Our previous genome-wide gene expression analysis revealed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors 4 (DR4) and 5 (DR5) are markedly upregulated by the ethanolic extract of D. sohia seeds (EEDS) in A549 TRAIL-refractory cancer cells. TRAIL is an attractive anticancer therapeutic due to its ability to induce apoptosis in a broad spectrum of cancer cells while sparing most normal cells [10,11,12]. The clinical application of TRAIL therapy has been limited by its inherently short half-life in blood (3–5 min in rodents and 24–31 min in non-human primates), insufficient delivery to the targets, and the appearance of cancer cell populations with intrinsic or acquired resistance to TRAIL-mediated programmed cell death [13, 14]. The development of an agonistic monoclonal antibody (mAb) or chimeric antigen receptors specific for TRAIL receptors are additional potential strategies for overcoming TRAIL instability [17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call