Abstract
In dispersion, nanoparticles can interact with the surrounding dispersion medium, such that an interfacial region with a structure differing from that of the bulk exists. Distinct nanoparticulate surfaces induce specific degrees of interfacial phenomena, and the availability of surface atoms is a crucial prerequisite for interfacial restructuring. Here, we investigate the nanoparticle-water interface of 0.5-10 wt. % aqueous iron oxide nanoparticle dispersions of 6nm diameter in the presence of 6 vol. % ethanol with x-ray absorption spectroscopy (XAS) and atomic pair distribution function (PDF) analysis. The absence of surface hydroxyl-groups in XAS spectra is in accordance with the double-difference PDF (dd-PDF) analysis, due to a fully covered surface from the capping agent. The previously observed dd-PDF signal is not stemming from a hydration shell, as postulated in Thomä et al. [Nat Commun. 10, 995 (2019)], but from the residual traces of ethanol from nanoparticle purification. With this article, we provide an insight into the arrangement of EtOH solutes in water at low concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.