Abstract

Ethanol is one of the most commonly abused drugs and consequently its toxic and psychoactive effect has been widely investigated, although little is known about the time-dependent effects of this drug. In the present research zebrafish was used to assess daily rhythms in ethanol toxicity and behavioural effects, as well as the temporal pattern of expression of key genes involved in ethanol detoxification in the liver (adh8a, adh5, aldh2.1 and aldh2.2). Our results showed marked differences in the mortality rate of zebrafish larvae depending on the time of day of the exposure to 5% ethanol for 1h (82% and 6% mortality in the morning and at night, respectively). A significant daily rhythm was detected with the acrophase located at “zeitgeber” time (ZT) = 04:22 h. Behavioural tests exposing zebrafish to 1% ethanol provoked a major decrease in swimming activity (68–84.2% reduction) at ZT2, ZT6 and ZT10. In contrast, exposure at ZT18 stimulated swimming activity (27% increase). During the day fish moved towards the bottom of the tank during ethanol exposure, whereas at night zebrafish increased their activity levels right after the exposure to ethanol. Genes involved in ethanol detoxification failed to show significant daily rhythms in LD, although all of them exhibited circadian regulation in constant darkness (DD) with acrophases in phase and located at the end of the subjective night. Taken altogether, this research revealed the importance of considering the time of day when designing and carrying out toxicological and behavioural tests to investigate the effects of ethanol, as the adverse effects of this drug were more marked when fish were exposed in the morning than at night.

Highlights

  • Chronotoxicology is a discipline that studies the temporal variations in the presence and severity of adverse effects of drugs and other chemicals when administered to an organism at different times of the day [1]

  • The mortality rate of zebrafish larvae exposed to 5% ethanol showed striking differences between sampling times (ANOVA I, p < 0.05): the highest mortality rate was observed at the beginning of the photophase on both Day 1 (ZT2) and 2 (ZT2b) (81.7% and 78.0%, respectively), thereafter mortality rate gradually decreased along the day and reached the lowest rate (6.3%) in the middle of the dark phase (ZT18) (Fig 1)

  • The overall reduction of activity during ethanol exposure was more marked at ZT2, ZT6 and ZT10 (-68%, -73% and -84.2%, respectively) than at ZT14 and ZT22 (-18% and -14%, respectively) (Table 2)

Read more

Summary

Introduction

Chronotoxicology is a discipline that studies the temporal variations in the presence and severity of adverse effects of drugs and other chemicals when administered to an organism at different times of the day [1]. Current evidence suggests that ethanol metabolism in zebrafish liver comprises two detoxification steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) [10]. Along this route, ethanol is converted first into acetaldehyde and into acetic acid, the accumulation of these products being responsible for the negative physiological and behavioural effects of ethanol [12]. ALDH2 has a high affinity for acetaldehyde, the toxic oxidised product of alcohol, and it is primarily responsible for the conversion of this compound into non-toxic acetic acid [14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call