Abstract

A study of the kinetics of ethanol conversion in the presence of Zr-containing zeolites BEA doped with palladium particles has revealed the order of formation of the main reaction products. It has been shown that the primary processes are ethanol dehydrogenation to acetaldehyde on Pd sites and ethanol dehydration to diethyl ether on the acid sites of the catalyst. After that, acetaldehyde undergoes the aldol–croton condensation reaction to form crotonal, which is hydrogenated to butanol on the metal sites. Butanol, in turn, is dehydrated into butenes, which undergo hydrogenation to butane. The presence of hydrogen in the gas phase leads to the displacement of ethanol from the metal surface and prevents the formation of surface carbonates and acetates. It has been found that hydrogen significantly accelerates ethanol dehydration owing to a decrease in the activation energy, which can be attributed to hydrogen spillover to the zeolite. The addition of water inhibits all acid-catalyzed reactions owing to competitive adsorption on acid sites and thereby decreases the butanol yield and the ethanol conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.