Abstract

ZnO- and SiO 2-supported palladium catalysts were evaluated in the ethanol steam-reforming and oxidative ethanol steam-reforming reactions in the temperature range 548–723 K. The catalysts were characterized before and after reaction by X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and infrared spectroscopy using CO as a probe molecule. On silica-supported Pd catalyst, ethanol decomposes into H 2, CO and CH 4 in both steam-reforming and oxidative steam-reforming reactions. In contrast, ZnO-supported catalysts containing the PdZn phase exhibit a better catalytic performance for hydrogen production through dehydrogenation of ethanol into acetaldehyde and ulterior reforming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.