Abstract

Dilute-acid softwood hydrolysate, with glucose and xylose as the dominant sugars, was fermented to ethanol by co-cultures. The strains used include Saccharomyces cerevisiae 2.535 (1#), Pachysolen tannophilis ATCC 2.1662 (2#), and recombinant Escherichia coli (3#) constructed in our laboratory carrying both pdc and adhB genes derived from Zymomonas mobilis. Before fermentation, the co-cultures were adapted for five batches. Observation under light microscope showed aggregation of adapted strains, which could possibly improve their ability to degrade inhibitors. In addition, we tried to detoxify the dilute-acid softwood hydrolysate with a combined method before fermentation. Our study showed that fermentation of detoxified hydrolysate by adapted co-culture (1# + 2#) generated an exceptionally high ethanol yield on total sugar of 0.49 g/g, corresponding to 96.1% of the maximal theoretical value after 48 h; fermentation of detoxified hydrolysate by adapted co-culture (1# + 3#) is faster (24 h) and could reach a high ethanol yield (0.45 g/g total sugar). These experiments suggest that both adaptation and detoxification significantly improve hydrolysate fermentation and ethanol production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.