Abstract
The metabolic and enzymatic bases for growth tolerance to ethanol (4%) and H2 (2 atm [1 atm = 101.29 kPa]) fermentation products in Clostridium thermohydrosulfuricum were compared in a sensitive wild-type strain and an insensitive alcohol-adapted strain. In the wild-type strain, ethanol (4%) and H2 (2 atm) inhibited glucose but not pyruvate fermentation parameters (growth and end product formation). Inhibition of glucose fermentation by ethanol (4%) in the wild-type strain was reversed by addition of acetone (1%), which lowered H2 and ethanol production while increasing isopropanol and acetate production. Pulsing cells grown in continuous culture on glucose with 5% ethanol or 1 atm of H2 significantly raised the NADH/NAD ratio in the wild-type strain but not in the alcohol-adapted strain. Analysis of key oxidoreductases demonstrated that the alcohol-adapted strain lacked detectable levels of reduced ferredoxin-linked NAD reductase and NAD-linked alcohol dehydrogenase activities which were present in the wild-type strain. Differences in the glucose fermentation product ratios of the two strains were related to differences in lactate dehydrogenase and hydrogenase levels and sensitivity of glyceraldehyde 3-phosphate dehydrogenase activity to NADH inhibition. A biochemical model is proposed which describes a common enzymatic mechanism for growth tolerance of thermoanaerobes to moderate concentrations of both ethanol and hydrogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.