Abstract

Ethanol's aversive property may limit it's use, but the underlying mechanisms are no well-understood. Emerging evidence suggests a critical role for the lateral habenula (LHb) in the aversive response to various drugs, including ethanol. We previously showed that ethanol enhances glutamatergic transmission and stimulates LHb neurons. GABAergic transmission, a major target of ethanol in many brain regions, also tightly regulates LHb activity. This study assessed the action of ethanol on LHb GABAergic transmission in rat brain slices. Application of ethanol accelerated spontaneous action potential firing of LHb neurons, and LHb activity was increased by the GABAA receptor antagonist gabazine, and ethanol-induced acceleration of LHb firing was further increased by gabazine. Additionally, ethanol potentiated GABAergic transmission (inhibitory postsynaptic currents, IPSCs) with an EC50 of 1.5 mM. Ethanol-induced potentiation of IPSCs was increased by a GABAB receptor antagonist; it was mimicked by dopamine, dopamine receptor agonists, and dopamine reuptake blocker, and was completely prevented by reserpine, which depletes store of catecholamine. Moreover, ethanol-induced potentiation of IPSCs involved cAMP signaling. Finally, ethanol enhanced simultaneously glutamatergic and GABAergic transmissions to the majority of LHb neurons: the potentiation of the former being greater than that of the latter, the net effect was increased firing. Since LHb excitation may contribute to aversion, ethanol-induced potentiation of GABAergic inhibition tends to reduce aversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.