Abstract
Recent findings from this laboratory demonstrate that ethanol reduces the intrinsic excitability of orbitofrontal cortex (OFC) neurons via activation of strychnine-sensitive glycine receptors. Although the mechanism linking ethanol to the release of glycine is currently unknown, astrocytes are a source of neurotransmitters including glycine and activation of dopamine D1-like receptors has been reported to enhance extracellular levels of glycine via a functional reversal of the astrocytic glycine transporter GlyT1. We recently reported that like ethanol, dopamine or a D1/D5 receptor agonist increases a tonic current in lateral OFC (lOFC) neurons. Therefore, in this study, we used whole-cell patch-clamp electrophysiology to examine whether ethanol inhibition of OFC spiking involves the release of glycine from astrocytes and whether this release is dopamine receptor dependent. Ethanol, applied acutely, decreased spiking of lOFC neurons and this effect was blocked by antagonists of GlyT1, the norepinephrine transporter or D1-like but not D2-like receptors. Ethanol enhanced the tonic current of OFC neurons and occluded the effect of dopamine suggesting that ethanol and dopamine may share a common pathway. Altering astrocyte function by suppressing intracellular astrocytic calcium signaling or blocking the astrocyte-specific Kir4.1 potassium channels reduced but did not completely abolish ethanol inhibition of OFC neuron firing. However, when both astrocytic calcium signaling and Kir4.1 channels were inhibited, ethanol had no effect on firing. Ethanol inhibition was also prevented by inhibitors of phospholipase C and conventional isoforms of protein kinase C (cPKC) previously shown to block D1R-induced GlyT1 reversal and PKC inhibition of Kir4.1 channels. Finally, the membrane potential of OFC astrocytes was depolarized by bath application of a Kir4.1 blocker, a D1 agonist or ethanol and ethanol effect was blocked by a D1 antagonist. Together, these findings suggest that acute ethanol inhibits OFC neuron excitability via a D1 receptor-mediated dysregulation of astrocytic glycine transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.