Abstract

The pancreas is vulnerable to ethanol toxicity, but the pathogenesis of alcoholic pancreatitis is not fully defined. The intracellular oxidative balance and the characteristics of the secretion of isolated rat pancreatic acinar cells stimulated with the cholecystokinin analogue cerulein were assayed after acute oral ethanol (4 g/kg) load. Pancreatic acinar cells from ethanol-treated rats showed a significant (p < 0.02) lower content of total glutathione and protein sulfhydryls, and higher levels of oxidized glutathione (p < 0.03), malondialdehyde, and protein carbonyls (p < 0.05). Ethanol-intoxicated acinar cells showed a lower baseline amylase output compared to controls, with the difference being significantly exacerbated by cerulein stimulation. After cerulein, the release of protein carbonyls by ethanol-treated cells was significantly increased, whereas that of protein sulfhydryls was significantly decreased. In conclusion, ethanol oxidatively damages pancreatic acinar cells; cerulein stimulation is followed by a lower output of amylase and by a higher release of oxidized proteins by pancreatic acinar cells from ethanol-treated rats. These findings may account for the decreased exocrine function, intraductular plug formation, and protein precipitation in alcoholic pancreatitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call