Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related mortality worldwide. The etiology of breast cancer is very diverse and ethanol (EtOH) consumption is a well-established risk factor for breast cancer in women. However, the mechanism by which EtOH exerts its carcinogenic activity in breast tissue remains unknown. CYP2E1 is known to metabolize ethanol and produce reactive oxygen species (ROS), including superoxide in epithelial cells. Therefore, in the present studies, we investigated whether there is an increase in ROS following overexpression of CYP2E1 in MCF-10A cells. We found that 30 and 100mM EtOH increased ROS levels after 2h treatment in CYP2E1 overexpressing cells. Based on these results and our previous studies with ROS-producing chemicals, we also examined epidermal growth factor receptor (EGFR) activation following exposure to ethanol. We found that there was an increase in phosphorylation of pY1086 EGFR after 18h EtOH treatment in CYP2E1 overexpressing cells. These studies support a hypothesis that EtOH might increase human mammary cell activation, via an EGFR-dependent signaling mechanism associated with oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.