Abstract

Current research on ethanol-induced cardiovascular anomalies has focused on left ventricular (LV) function and blood pressure. To extend this area of research, we sought to determine whether ethanol-induced alterations in the structure and function of the right cardiac ventricle (RV) and pulmonary artery (PA) lead to pulmonary arterial hypertension (PAH). Two groups of male Sprague-Dawley rats received a balanced liquid diet containing 5% ethanol (w/v) or a pair-fed isocaloric liquid diet for 8 weeks. Weekly echocardiography was conducted to evaluate cardiopulmonary function, and lung and RV tissues were collected for exvivo histological and molecular studies. The ethanol-treated rats exhibited: (1) Elevated mean pulmonary arterial pressure and decreased pulmonary artery acceleration time/ejection time; (2) Pulmonary vascular remodeling comprising intrapulmonary artery medial layer thickening; and (3) RV hypertrophy along with increased RV/LV + septum, RV diameter, RV cardiomyocyte cross-sectional area, and LV mass/body weight ratio. These responses were associated with increased lung and RV pro-inflammatory markers, endothelin-1 (ET-1), TNF-α, and IL-6 levels and higher ET-1,ET-1 type A/B receptor ratio, and downregulation of the cytoprotective protein, bone morphogenetic protein receptor 2 (BMPR2), in the lungs. These findings show that moderate ethanol-induced cardiopulmonary changes underlie progression to PAH via an upregulated proinflammatory ET1-TNFα-IL6 pathway and suppression of the anti-inflammatory BMPR2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call