Abstract

Lipid-enveloped viruses, such as Ebola, influenza, or coronaviruses, are a major threat to human health. Ethanol is an efficient disinfectant that is widely used to inactivate these viruses and prevent their transmission. However, the interactions between ethanol and enveloped viruses leading to their inactivation are not yet fully understood. This study demonstrates the link between ethanol-induced viral inactivation and the nanostructural and chemical transformations of the model virus Phi6, an 85 nm diameter lipid-enveloped bacterial virus that is commonly used as surrogate for human pathogenic viruses. The virus morphology was investigated using small-angle X-ray scattering and dynamic light scattering and was related to its infectivity. The Phi6's surface chemistry was characterized by cryogenic X-ray photoelectron spectroscopy, and the modifications in protein structure were assessed by circular dichroism and fluorescence spectroscopy. Ethanol-triggered structural modifications were found in the lipid envelope, detaching from the protein capsid and forming coexisting nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call