Abstract

Alcohol exposure during pregnancy induces a wide range of structural and functional abnormalities in the fetal heart. However, the underlying mechanism of this phenomenon is not well known. This study was undertaken to elucidate probable mechanisms of myocardial damage induced by prenatal and early postnatal ethanol treatment. Pregnant Wistar rats received ethanol 4.5g/kg BW once per day from the seventh day of gestation (GD7) throughout lactation. The oxidative stress injury of the myocardium in pups was evaluated by measuring levels of oxidative stress biomarkers. Histopathological examinations and Western blot were performed to evaluate histological features, apoptosis, and molecular alterations in the myocardial tissue of male pups on the postnatal day 21 (PN-21) and postnatal day 90 (PN-90). The results showed that maternal ethanol consumption caused oxidative stress (impaired total antioxidant capacity and malondialdehyde), histological changes, and apoptosis of the myocardium in the pups on PN-21 and PN-90. At the molecular levels, Western blot analysis revealed that ethanol modulated the protein expression of p-ERK1/2, p-JNK, and Hsp70 in the myocardial tissue of the pups after 21 and 90days of birth compared with the controls. These findings revealed that maternal ethanol intake induced cardiac toxicity in part, mediated by oxidative stress and apoptosis in the pups. A further mechanism study revealed that ethanol enhanced ERK1/2 and JNK phosphorylation and Hsp70 protein expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call