Abstract

Ethanol increases the activity of "basal," guanine nucleotide- and dopamine-stimulated adenylate cyclase in mouse striatum. In contrast, ethanol, in vitro, did not modify the inhibition of striatal adenylate cyclase activity by opiates (morphine or [D-Ala2,D-Leu5] enkephalin). Following chronic in vivo ethanol treatment of mice, there was also no change in the character of opiate inhibition of striatal adenylate cyclase activity. Since ethanol, in vitro, does decrease striatal opiate receptor binding, the results suggest that the changes in affinity detected by ligand binding studies are not relevant for receptor-coupled adenylate cyclase activity, or that opiate receptor binding and opiate regulation of adenylate cyclase can be modulated independently. The selective effects of ethanol on systems that modulate adenylate cyclase activity may produce imbalances in neuronal function during in vivo ethanol exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.