Abstract

Tantalum-containing SiBEA zeolite with isolated framework mononuclear Ta(V) doped with Ag, Cu, and Zn was prepared and characterized by XRD, XPS, DR UV–vis, and FTIR (with pyridine, 2,6-di-tert-butylpyridine, pyrrole, and deuterated chloroform). The conversion of ethanol as a renewable raw material into 1,3-butadiene by the Lebedev method over these zeolite catalysts was investigated. The doping of TaSiBEA with Ag, Cu, and Zn changes its catalytic properties in ethanol conversion into 1,3-butadiene as a result of modification of the acid–base properties with formation of additional dehydrogenation sites. Such modification allows accelerating ethanol dehydrogenation to acetaldehyde and subsequent steps of the ethanol-to-butadiene process. Ethanol conversion and butadiene selectivity over the catalysts are increased in the order: TaSiBEA < ZnTaSiBEA < AgTaSiBEA < CuTaSiBEA. Higher selectivity to butadiene (73%) was achieved over CuTaSiBEA (at 88% ethanol conversion, T = 598 K, WHSV = 0.5 h–1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.