Abstract
Airway smooth muscle cells are the main effector cells involved in airway narrowing and have been used to study the signaling pathways involved in asthma-induced airway constriction. Our previous studies demonstrated that ethanol administration to mice attenuated methacholine-stimulated increases in airway responsiveness. Because ethanol administration attenuates airway responsiveness in mice, we hypothesized that ethanol directly blunts the ability of cultured airway smooth muscle cells to shorten. To test this hypothesis, we measured changes in the size of cultured rat airway smooth muscle (RASM) cells exposed to ethanol (100 mM) after treatment with methacholine. Ethanol markedly attenuated methacholine-stimulated cell shortening (methacholine-stimulated length change = 8.3 ± 1.2% for ethanol versus 43.9 ± 1.5% for control; P < 0.001). Ethanol-induced inhibition of methacholine-stimulated cell shortening was reversible 24 hours after removal of alcohol. To determine if ethanol acts through a cGMP-dependent pathway, incubation with ethanol for as little as 15 minutes produced a doubling of cGMP-dependent protein kinase (PKG) activity. Furthermore, treatment with the PKG antagonist analog Rp-8Br-cGMPS (10 μM) inhibited ethanol-induced kinase activation when compared with control-treated cells. In contrast to the effect of ethanol on PKG, ethanol pretreatment did not activate a cAMP-dependent protein kinase. These data demonstrate that brief ethanol exposure reversibly prevents methacholine-stimulated RASM cell contraction. In addition, it appears that this effect is the result of activation of the cGMP/PKG kinase pathway. These findings implicate a direct effect of ethanol on airway smooth muscle cells as the basis for in vivo ethanol effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.