Abstract

Catalytic reactions of the steam reforming (SR) of dimethyl ether (DME) and (bio)ethanol to hydrogen-rich gas were compared in a fixed-bed continuous-flow reactor at temperatures of 550–650 °C under atmospheric pressure over Rh/Al2O3 catalysts in terms of product distribution. Rh/Al2O3 catalysts are able to catalyze the high-temperature SR of both EtOH and DME, but in the latter case, higher H2 yields are obtained and the catalyst is less prone to coking. The aim of this work is to optimise the hydrogen production. Differences in reaction pathways over DME/H2O and EtOH/H2O are indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call