Abstract

Ethanol exposure produces alterations in GABAergic signaling that are associated with dependence and withdrawal. Previously, we demonstrated that ethanol-induced protein kinase C (PKC) γ signaling selectively contributes to changes in GABAA α1 synaptic receptor activity and surface expression. Here, we demonstrate that protein kinase A (PKA) exerts opposing effects on GABAA receptor adaptations during brief ethanol exposure. Cerebral cortical neurons from day 0-1 rat pups were tested after 18 days in culture. Receptor trafficking was assessed by Western blot analysis, and functional changes were measured using whole-cell patch-clamp recordings of evoked and miniature inhibitory postsynaptic current (mIPSC) responses. One-hour ethanol exposure increased membrane-associated PKC and PKA, but steady-state GABAA α1 subunit levels were maintained. Activation of PKA by Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine alone increased GABAA α1 subunit surface expression and zolpidem potentiation of GABA responses, whereas coexposure of ethanol with the PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine decreased α1 subunit expression and zolpidem responses. Exposure to the PKC inhibitor calphostin-C with ethanol mimicked the effect of direct PKA activation. The effects of PKA modulation on mIPSC decay τ were consistent with its effects on GABA currents evoked in the presence of zolpidem. Overall, the results suggest that PKA acts in opposition to PKC on α1-containing GABAA receptors, mediating the GABAergic effects of ethanol exposure, and may provide an important target for the treatment of alcohol dependence/withdrawal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call