Abstract

We find a new effect for the behaviour of Von Neumann entropy. For this we derive the framework for describing Von Neumann entropy in non-Hermitian quantum systems and then apply it to a simple interacting PT symmetric bosonic system. We show that our model is well defined even in the PT broken regime with the introduction of a time-dependent metric and that it displays three distinct behaviours relating to the PT symmetry of the original time-independent Hamiltonian. When the symmetry is unbroken, the entropy undergoes rapid decay to zero (so-called "sudden death") with a subsequent revival. At the exceptional point it decays asymptotically to zero and when the symmetry is spontaneously broken it decays asymptotically to a finite constant value ("eternal life").

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call