Abstract

The etching of spores of Bacillus atrophaeus by oxygen atoms, molecules and argon ions is investigated in a particle beam experiment. Thereby, the conditions occurring in an argon oxygen plasma are mimicked and fundamental inactivation mechanisms are revealed. It is shown that only the combined impact of argon ions and of O atoms or O2 molecules causes significant etching of the spores. This is explained by the process of chemical sputtering, where an ion induced defect at the surface of the spore reacts with either the incident bi-radical O2 or with an incident O atom. This leads to the formation of CO, CO2 and H2O and thus to erosion. This process is compared to the plasma etching of hydrocarbon thin films as an atomistic model system for the spore coat. It is shown that the etch rate in an inductively coupled argon oxygen plasma is only maximal if both, the electron density and thus the ion flux towards the surface and the O atom flux are optimized simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call