Abstract

AbstractGraphene oxide (GO) nanosheets stacked in parallel with subnanometer channels can exhibit an excellent size‐sieving ability for membrane‐based gas separation. However, gas molecules have to diffuse through the tortuous nanochannels, leading to low permeability. Herein we demonstrate two versatile approaches to modify the GO (before membrane fabrication by vacuum‐filtration) to collectively increase gas permeability, etching using hydrogen peroxide to generate in‐plane nanopores and acidifying using hydrochloric acid. For example, a membrane prepared at a pH of 5.0 using the 4‐h‐etched GO (HGO‐4h) shows He permeability of 5.3 Barrer and He/CH4 selectivity of 800, which are 5 times and 1.5 times those of the GO membranes, respectively. Decreasing the pH from 5.0 to 2.0 for HGO‐4h enhances He permeability to 57 Barrer and He/CH4 selectivity to 1,800. The HGO‐4h prepared at the pH of 2.0 exhibits separation properties of H2/CO2, H2/N2, He/N2, and He/CH4 surpassing their corresponding upper bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.