Abstract
The objective of present research article is to investigate the geometric properties of $\eta$-Ricci solitons on Lorentzian para-Kenmotsu manifolds. In this manner, we consider $\eta$-Ricci solitons on Lorentzian para-Kenmotsu manifolds satisfying $R\cdot S=0$. Further, we obtain results for $\eta$-Ricci solitons on Lorentzian para-Kenmotsu manifolds with quasi-conformally flat property. Moreover, we get results for $\eta$-Ricci solitons in Lorentzian para-Kenmotsu manifolds admitting Codazzi type of Ricci tensor and cyclic parallel Ricci tensor, $\eta$-quasi-conformally semi-symmetric, $\eta$-Ricci symmetric and quasi-conformally Ricci semi-symmetric. At last, we construct an example of a such manifold which justify the existence of proper $\eta$-Ricci solitons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Facta Universitatis, Series: Mathematics and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.