Abstract

Inflammation contributes to amyloid beta (Aβ) aggregation and neuron loss in Alzheimer’s disease (AD). Meanwhile, tumor necrosis factor-α (TNF-α) inhibitors present strong effect on suppressing inflammation. Thus, this study aimed to investigated the effect and molecular mechanism of etanercept (ETN) (a commonly used TNF-α inhibitor) on neuron injury and neuroinflammation in AD. AD cellular model was constructed by co-culture of primary embryonic neuron cells and microglial cells, followed by Aβ treatment. Subsequently, ETN was used to treat AD cellular model. Besides, APPswe/PS1M146V/tauP301L transgenic (AD) mice were respectively treated with saline or ETN by intravenous injection once per 3 days for 10 times. In vitro data revealed that cell viability and neurite outgrowth were increased, but apoptosis and levels of pro-inflammatory cytokines (including TNF-α, interleukin-1β, Interleukin-6 and C–C motif chemokine ligand 2 (CCL2)) were decreased by ETN treatment in AD cellular model. In vivo experiments found that ETN treatment improved spatial, long-term memory (reflected by Morrison water maze) and working memory (reflected by Y maze) in AD mice. Besides, ETN treatment reduced neuron injury (reflected by Hematoxylin–Eosin (HE) and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) assays) and levels of pro-inflammatory cytokines (including TNF-α, interleukin-1β, Interleukin-6 and CCL2) in AD mice. Moreover, ETN repressed the activation of c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) pathways in AD both in vitro and in vivo. In conclusion, ETN exerts neuroprotective function via inactivating JNK and NF-κB pathways in AD, indicating the potential of ETN for improving AD management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call