Abstract

Changes in gastric mucosal and hepatic tissue blood flow were simultaneously determined using a laser-Doppler blood flow meter in rats given i.v. injection of endothelin-1 (ET-1) and endothelin-3 (ET-3), both at 2 nmol/kg. Gastric mucosal blood flow decreased significantly after administration of ET-1 compared to after administration of ET-3. Decreases in blood flow due to ET-1 were reversed by pre-treatment with 10 mg/kg of BQ-123 (sodium salt), an ETA receptor antagonist, to levels comparable to those induced by ET- 3, but BQ-123 had no effects on decreases in blood flow due to ET-3. On the other hand, decreases in hepatic tissue blood flow by ET-3 were significant compared to those by ET-1. Decreases in hepatic tissue blood flow due to ET-1 were slightly inhibited by pre-treatment with 10 mg/kg of BQ-123, but it had no effect at all on decreases due to ET-3. These findings indicate that decreases in gastric mucosal blood flow are mainly caused by ET-1 via ETA receptors inhibited by BQ-123, while decreases in hepatic tissue blood flow are caused mainly by ET-3 via non-ETA receptors not inhibited by BQ-123. The fact that ET-3 decreases blood flow more significantly than ET-1 suggests the involvement of ET-3 selective receptors (ETc). The findings obtained in the present study indicate that complex mechanisms are involved in the regulation of tissue blood flow by ET, with different receptor subtypes and ET family peptides being involved according to the type of tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call