Abstract

The prefrontal cortex (PFC) supports a diversity of cognitive processes. Impairment in PFC-dependent cognition is associated with multiple psychiatric disorders, including those known to display sex differences. Our ability to treat this impairment is limited, in part due to an incomplete understanding of the neural mechanisms that support PFC-dependent cognition. In previous studies in male rats, we demonstrated that corticotropin-releasing factor (CRF) receptors and neurons in caudal dorsomedial PFC (dmPFC) regulate PFC-dependent working memory. Subcortically, CRF can exert sex-specific actions, a subset of which are ovarian steroid dependent. To date, the cognitive actions of dmPFC CRF neurotransmission in females are unknown. To address this gap, the current studies examined the effects of chemogenetic and pharmacological manipulations of CRF receptors and neurons within the dmPFC of female rats tested in a spatial working memory task. Outside of proestrus, activation of both CRF receptors and neurons in the caudal, but not rostral, dmPFC impaired working memory. Meanwhile, blockade of CRF receptors in the caudal dmPFC or globally in the brain, improved working memory performance, similar to that seen in males. In contrast, these effects were not observed during proestrus. These observations demonstrate that while CRF neurotransmission in the PFC regulates working memory similarly in males and females, these actions are not observed in females when ovarian steroids are at peak levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.