Abstract
Female mammals experience cyclical changes in sexual receptivity known as the estrus cycle. Little is known about how estrus affects the cortex, although alterations in sensation, cognition and the cyclical occurrence of epilepsy suggest brain-wide processing changes. We performed invivo juxtacellular and whole-cell recordings in somatosensory cortex of female rats and found that the estrus cycle potently altered cortical inhibition. Fast-spiking interneurons were strongly activated with social facial touch and varied their ongoing activity with the estrus cycle and estradiol in ovariectomized females, while regular-spiking excitatory neurons did not change. In situ hybridization for estrogen receptor β (Esr2) showed co-localization with parvalbumin-positive(PV+) interneurons in deep cortical layers, mirroring the laminar distribution of our physiological findings. The fraction of neurons positive for estrogen receptor β (Esr2) and PV co-localization (Esr2+PV+) in cortical layer V was increased in proestrus. Invivo and invitro experiments confirmed that estrogen acts locally to increase fast-spiking interneuron excitability through an estrogen-receptor-β-dependent mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.