Abstract

The effects of reproductive hormones on ovarian cancer growth are not well understood. Here, we examined the effects of estrous cycle variation and specific reproductive hormones on ovarian cancer growth. We investigated the role of reproductive hormones in ovarian cancer growth using both in vivo and in vitro models of tumor growth. In vivo experiments using the HeyA8 and SKOV3ip1 ovarian cancer models showed that tumor cell inoculation during proestrus significantly increased tumor burden (251-273%) compared with injection during the estrus phase. Treatment of ovariectomized mice with 17beta-estradiol resulted in a 404% to 483% increase in tumor growth compared with controls. Progestins had no significant effect, but did block estrogen-stimulated tumor growth. Tumors collected from mice sacrificed during proestrus showed increased levels of vascular endothelial growth factor (VEGF) and microvessel density compared with mice injected during estrus. HeyA8, SKOV3ip1, and mouse endothelial (MOEC) cells expressed estrogen receptor alpha and beta and progesterone receptor at the protein and mRNA levels, whereas 2774 ovarian cancer cells were estrogen receptor-negative. In vitro assays showed that 17beta-estradiol significantly increased ovarian cancer cell adhesion to collagen in estrogen receptor-positive, but not in estrogen receptor-negative cells. Additionally, 17beta-estradiol increased the migratory potential of MOEC cells, which was abrogated by the mitogen-activated protein kinase (MAPK) inhibitor, PD 09859. Treatment with 17beta-estradiol activated MAPK in MOEC cells, but not in HeyA8 or SKOV3ip1 cells. Our data suggest that estrogen may promote in vivo ovarian cancer growth, both directly and indirectly, by making the tumor microenvironment more conducive for cancer growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.