Abstract
Since both estrogens and cyclic guanosine 3',5'-monophosphate stimulate protein synthesis, the objective of the present investigation was to determine if estrogens and their precursors might have part of their mechanism of action through stimulation of guanylate cyclase (E.C.4.6.1.2), the enzyme that catalyzes the conversion of guanosine triphosphate to cyclic guanosine 3',5'-monophosphate. The precursors of estrogen synthesis originate from cholesterol. Cholesterol itself had no effect on guanylate cyclase activity. The precursors of estrogen synthesis generated from cholesterol, namely, progesterone, 17 alpha-OH-progesterone, androstenedione, pregnenolone, 17 alpha-OH-pregnenolone, and dehydroepinandrosterone, however, caused a 2- to 3-fold enhancement of fetal and maternal guinea pig hepatic and uterine guaynlate cyclase activity at a concentration of 1 microM. In comparative studies, similar effects were seen on immature female Sprague-Dawley rat hepatic and uterine guanylate cyclase activity. Estrone, estradiol-17 beta, estriol, and the synthetic estrogen, diethylstilbestrol, enhanced guanylate cyclase activity in the same tissues 2- to 3- fold at the 1 microM concentration. Dose-response relationships revealed that these estrogens and their precursors had their maximal effect at 0.001 microM. Estradiol-17 alpha also enhanced uterine guanylate cyclase activity, but a 1000-fold greater concentration compared to the other estrogens was necessary to show any significant effect. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of estrogens and their precursors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.