Abstract
Triarylethylenes bearing acetic acid side chains, exemplified by 4-[1-( p-hydroxyphenyl)-2-phenyl-1-butenyl]phenoxyacetic acid (4HTA), a derivative of tamoxifen (TAM), are of current interest as estrogen mimics lacking reproductive tract effects. Affinities for estrogen receptors (ER) and effects on cell growth kinetics of a diverse series of such compounds were compared with 4HTA, TAM, and with standard estrogens 17β-estradiol (E 2) and chlorotrianisene (CTA) in MCF-7 cells. These compounds exhibited concentration dependent cell growth stimulation comparable to that of CTA but less than that of E 2. Growth stimulation of the more potent compounds was antagonized by TAM, signifying that effects were mediated via interaction with ER. At concentrations of 1 μM or higher, compounds with efficacies less than that of E 2 were weak antagonists of estradiol-stimulated growth. Both intracellular ER affinities and growth rate stimulation potencies of the triarylethylene acetic acids and the standard ER ligands varied over a range of nearly three orders of magnitude. Analysis of growth stimulatory potency as a function of ER affinity revealed dual parallel correlations: the potency/ER affinity ratios of 4HTA and four of its analogues was about 100-fold less than those of the hydroxytriarylethane and bisphenolic analogs and the three standard ER ligands. These results suggested that ER liganded with the latter substances is more ‘effective’ at nuclear effector sites than is ER liganded with 4HTA and the other acidic triarylethylenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Steroid Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.