Abstract
Gonadal hormones act throughout the brain 1 , and neuropsychiatric disorders vary in symptom severity over the reproductive cycle, pregnancy, and perimenopause 2-4 . Yet how hormones influence cognitive processes is unclear. Exogenous 17 β -estradiol modulates dopamine signaling in the nucleus accumbens core (NAcc) 5,6 , which instantiates reward prediction errors (RPEs) for reinforcement learning 7-16 . Here we show that endogenous 17 β -estradiol enhances RPEs and sensitivity to previous rewards by reducing dopamine reuptake proteins in the NAcc. Rats performed a task with different reward states; they adjusted how quickly they initiated trials across states, balancing effort against expected rewards. NAcc dopamine reflected RPEs that predicted and causally influenced initiation times. Elevated endogenous 17 β -estradiol increased sensitivity to reward states by enhancing dopaminergic RPEs in the NAcc. Proteomics revealed reduced dopamine transporter expression. Finally, knockdown of midbrain estrogen receptors suppressed reinforcement learning. 17 β -estradiol therefore controls RPEs via dopamine reuptake, mechanistically revealing how hormones influence neural dynamics for motivation and learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.